
Index des tutoriauxThe Tarquin Extruder Builder
Brush

I would like to show you a powerful and easy-to-use builder brush that everyone should
know:

Yes, it is really easy to use. No no, really, once you get over the many options with
strange and impressive names, you will see that it is actually an intuitive builder brush
which can save you a lot of time.

The Tarquin Extruder Builder Brush works by drawing a polygon, placing its vertices, then
entering several points defining a path along which the shape is extruded, allowing you to
easily and quickly create pipes, wires, borders or tunnels. It also makes texturing much
easier by keeping a texture more or less cleanly wrapped on the surfaces of the resulting
brush.

The Tarquin Extuder Builder Brush was last updated by Tarquin in may 2001, and it is both
ancient and widely unknown, like most custom UnrealEd tools. This is a shame and has to
change. Despite Tarquin declaring it still at the "experimental stage" at the time it was
released, it is perfectly stable and can be used with no risks.

1. Where to find it and how to install it ?
Since the demise of all the PlanetUnreal websites and the subsequent vanishing of
Tarquin's website, the original links and tutorials by the creator of the tool itself are lost.

https://web.archive.org/web/20160323020707/http://hellkeeper.net/tutoriaux.php


Fortunately, the tools themselves are still widely available through hosting sites. You can
download the Tarquin Extruder Builder Brush at the bottom of this page, choosing the one
corresponding to the game you want to use it with. The UT99 tools work with UnrealEd
2.0 and 2.1 for Unreal with the 227 pack, but I have no clue if they work with the ancient
and deprecated UnrealEd 1.0 which, as far as I know, uses a completely different system.

Once the file is downloaded and unzipped, put the BBTarquinExtrude.bmp file in
System\editorres folder of your Unreal Directory, and the .u file into the \System folder.
Then, open Unreal.ini/UnrealTournament.ini/UT2004.ini (or any other variation depending
on the game you are using) with a text-editing software and search for the EditPackages=
lines; there should be a bunch of those in the middle of the file, in the
[Editor.EditorEngine] chapter. At the end of this list, add the line
EditPackages=TarquinExtrudeBuilder, save and close.

This will tell UnrealEd to search and process the TarquinExtrudeBuilder.u file the next
time you open it, and the tool will thereafter be available. Now, launch UnrealEd. The
TarquinExtruderBuilderBrush (from now on contracted as TEBB), is available under the
usual builder brushes as a purple snake-like tool.

2. How does it work?
Right-click on the tool to open the truckload of properties shown earlier. If you try left-
clicking on it, you should see a popup window explaining that you need at least two
PathPoints. We will see why later.

The two most important properties of the TEBB are the ShapePoints and PathPoints lists.
Each list can contain up to 16 (0-15) points to define a shape and a path along which to
extrude it. Under these two are the ShapeFactor and PathFactor, defaulted to 64. These
two parameters how long "1" is in Unreal Units in the lists. For example, drawing a square
shape to be extruded along a path means you will need 4 points with coordinates along
the lines of 000,100,110,010 on a XYZ setting:

https://web.archive.org/web/20160323020707/http://hellkeeper.net/files.php


In this case, a point with the coordinates X=0, Y=1, Z=0 will be placed 64 units away from
the brush's pivot on the Y axis if ShapeFactor is set to 64. Likewise, if the path calls for
the shape to be extruded on "4" along the X axis, the shape will be extruded along
4*64=256 units. Of course, you can set non-integers as an input value, like 0.5 to move a
vertex 32 units away instead of 64. It also means you can easily double of halve the scale
of a brush by halving the ShapeFactor, or its path with the PathFactor.

The 0,0,0 point is the position of the pivot of the brush. Usually, the pivot will thus be
blended with your first vertex (which is at coordinates 0,0,0 by default too), but you can
also decide to put your first vertex on another position, with the pivot clearly
distinguishable from it. It should not be very useful in most cases though.

Under the Factors is the ExtrudeType parameter. EX_ThirdWay and EX_Tangential seem
more or less similar, but EX_Transational is quite different. Using Tangential and ThirdWay
usually results in the shape being rotated appropriately to face the path, and then
extruded lenght-wise. This means the shape will always be facing (at each point of its
path) the next point, each part of the "snake" will have the same width, and corners will
be nicely defined:

This image is taken in the TOP viewport. Though the shape is defined on the X/Y plane,
the brush is rotated in order to face the direction of its path, and drawn on an Y/Z plane
instead. Notice how the bend is elegant and balanced, the shape itself always facing its
next direction. Now, if we change this to EX_Translational :



It is translated into a bloody mess of vertices and edges. Why? The shape is a trapezoid on
the X/Y plane translated solely on the XY plane. If we analyse the brush, we can see that
what we have is precisely what we asked for:

Notice in blue the three successive positions of the original shape which is translated but
never altered or rotated. In order to have a better result, the shape should not be defined
on the X/Y plane but on the Y/Z plane, so that it would face the direction of the first
part of the path. Where the shape would bend, a translational extrusion will keep the
same polygon and only translate it: move everyone of its points to the new position and
link them to the previous stage. Tangential and Third way, on the other hand, will make a
nice bend and allow the shape to be of equal width at each point. Most of the time,
Tangential is preferable, but some cases could occur where Translational may come in
handy.

Under the ExtrudeType, ShapeSource allows you to choose between 3 basic shapes: square
(with each vertex separated by 1, so adjust you ShapeFactor), Circle, a 8-sided circular
shape that can be used for tubes, pipes or tunnels, MrPointy, which is a complex shape
made of two crossing arrows (better used as a way to remember which axis is X or Y or Z),
and finally, Vectors, which allows you to define a shape with the vertices set in
ShapePoints. By default, this setting is set to SO_Square, so if your new shape seems to be
ignored, take a look there. Right under it is PathSource. This important parameter defines
what each PathPoint (set into the PathPoints list) is relative to. By default, this parameter
is set to SO_Vect_Abs(olute); in this case, each PathPoint will be defined relatively to the
origin of your brush. SO_Vect_Rel(ative), on the other hand, means each PathPoint is
relative to the previous PathPoint in the list:

As you can see here, the blue set shows three points with their coordinates relative to the



origin of the brush (the 0,0,0 point): they use Absolute coordinates. The second vertex is
only "7" away from the origin on the Y axis, but the third is distant from the origin by "12"
on the Y axis and "8" on the X axis. The red setting has relative coordinates: each vertex
is defined by the position of the previous one: the second vertex is still distant from the
origin by "7" on the Y axis, but the last vertex is 8X and 5Y away from the previous
vertex: its position is not defined by the position of the origin but by its predecessor in
the list.

Both methods have pros and cons. Absolute coordinates allow you to adjust part of your
brush without affecting other sections of it, while any change to any point in the relative
setting will change the position of all subsequent PathPoints. However, relative vectors
are easier to compute and handle. What setting to use is a matter of opinion and
situation.

PresetMetrics is an array that ties in with the ShapeSource parameter. When using the
predefined Square, only the 0,1,2 and 3 fields are taken into account; 0 determines the
breadth of the square on the X axis, 1 determines its width on the Y axis. These numbers
are multiplied by the value of the ShapeFactor property to create the original polygon.
PresetMetrics 2 and 3 are used to offset all vertices on the X and Y axis.

Now when using a Circle ShapeSource, Preset 0 is the number of sides of the full circle.
Note however that going above 16 will give you increasingly incorrect results, with a
portion of the circle obviously cut. PresetMetrics1 defines how many of these sides are
actually used: this allows you to create only semi-circular shaped (or a quarter of a circle
etc.); 2 and 3 are still offset settings on the X and Y axis, but now, PresetMetrics 4 allows
you to chose if the cylinder is "aligned" (1) or not (0). An "aligned" cylinder is built
differently (you can try this on a normal cylinder to understand the effect).

ClosedPath is also a very important setting: if your shape has at least three PathPoints,
you can set this property to true and the last PathPoint will automatically be linked back
to the origin, creating a ring-like shape. This is very useful but requires at least three
PathPoints, as the TEBB will otherwise refuse - rightly so - to build a faulty brush.

MergeCoplanars is exactly what it says on the tin: say you have a long extruded tunnel
with no height variation; the floor will be made of as many coplanar faces as there are
sections of the path. This parameter, if set to true, will merge these faces into one,giving
better lighting and texture alignment.

SheetPolys will create a brush with only sheets: the brush will be visible from the inside
and the outside, will not have caps and will have no collision. This setting is of limited
interest.

InvisibleFinal is a tricky function: it will build the brush according to your path, but will
not build the final section. What makes this setting useful is that it allows you to end your
brush with something else than the usual cross-section of your shape: the last part of your
shap will be bended, as if another PathPoint was computed but not joined:

From left-to-right, a normal shape with two points, the same with a third point added,
and finally the second shape with InvisibleFinal. As you can see, the last section is not
drawn but the last visible section is bended accordingly.

The two next parameters, Randomiser and RandomiserCaps can be used to randomise



slightly the position of the vertices along the path : by entering a value (for example 0.5)
in a field, all vertices will be randomly increased by a number between 0 and 0.5 on the
selected axis. The Randomiser settings affect vertices along the path, while
RandomiserCaps values affect only the vertices of the shape at the beginning and end of
the path.

Maths determines how the path is computed. Because no "official" documentation remains,
its effects are mysterious, but it is better to leave this one to MA_Quaternion, as Matrix is
known to cause some problems.

GroupeName is an unimportant parameter that defines the name of the group to wich the
created brush is added. Finally, _COMMAND contains a variety of useful commands to be
activated when clicking "Build". C_None is default inactive. C_ResetPath and C_ResetShape
are by far the most useful ones as they allow you to reset completely the PathPoints and
ShapePoints lists on build (by setting all their values to 0, instead of having you enter all
these zeros by hand). C_ShowShape will create the shape as a 2d sheet, which is useful in
the first stage of the creation of a new brush by allowing you to see precisely what it looks
like before setting a path. C_ShowJoint creates only the joints, the shape itself, on each
bend of its path:

C_MoveShape, C_ScaleShape and C_RotShape will respectively offset, scale and rotate the
shape according to the parameters of the _Parameters field. With Scale, Parameters 0 and
1 will define the factor by which the shape is scaled ont the X and Y axis. With Move,
they will define how far the shape is offset on the X and Y axis. With Rotate, only
Parameters 0 is useful and will define by how many degrees the shape is rotated. Note
that contrarily to all UnrealEd customs, this is done with real degrees (180 being a U-turn)
and not UnrealEd degrees (with 65536 being 360°).

C_MakeArc could work much like the revolve tool of the 2DShape Editor, but does not: it is
supposed to allow you to revolve your shape. You need at least three PathPoints to use it.
The three last points of the shape are used to determine the revolving in a mystical way
that can only been described as a masochistic mathematical computation. I will let
Tarquin's description speak for itself:

"The builder looks at the last three PathPoints; call them A,B,C in order, so C is the very
last PathPoint. The arc will start at point A. B and C are used for information about the
size and orientation of the arc and will be over-written. B is taken to be the centre of
the arc, and C is a point 1/4 of the way around the full circle. Another way of looking at
it is that line AB goes from 12 o'clock to the centre of the clock face, and BC from the
centre to 3 o'clock.
Note that if these two lines are of different lengths the arc will be a piece of an ellipse
rather than a circle."

Long story short, the three last PathPoints are used to set, in that order: 1) The last
position of your current shape. It acts as the orange vertex in the 2DShape editor: the
center of the brush; 2) The center, or pivot, around which to revolve the arc. It acts as
the green pivot in the 2DShape Editor; 3) A point arbitrarily set as a quarter of a complete
circle.

The MakeArc tool also uses the _Parameters fields: 0 is the number of sides for 360°, 1 is
the number of sides used, and 2 allows you to choose between "aligned" (1) or not (0).So
if you set in 1 a value which is a quarter of the one you set in 0, you will have a quarter
of a circle, starting in A, ending in C and revolving around B. If you set 1 to be a half of 0,
you'll have a semi-circle and C will be precisely in the middle of it, etc. As Tarquin points
out, if AB and BC have unequal lengths, your "circle" will have more width than length (or



the other way round), and you'll have an ellipse.

Finally, the C_MakeMirror function allows you to mirror all your existing points from the
last PathPoint you set:

_Parameters0 can be used: it will decide what happend to the last section of the brush.
When set to 0, the last section of the brush is deleted completely and the two halves are
joined together at an angle equivalent to the one they would have if the last section was
between them. If set to 1, the last section is preserved : the mirror image starts at its
end. If set to 2, the last secion is itself mirrored; the last section is doubled in fact, and
then the mirror image is added.

Now that you have gone through all these complex parameters with intimidating names, it
is time to start using them. We will see only a couple of basic functions, those you are
most likely to use. Very advanced and complex things can be done with it, but once you
feel the need to use them, you should be UnrealEd-savvy enough to mess around with the
TEBB with me holding your hand.

3. Using the Tarquin Extruder.
Take a look at this scene:

The map is DmRiot. Most of the structures here (the windows, the borders), run all around
the room and are closed shapes. This is the exact type of situation where you would want



to use the TEBB : long borders with many bends, eventually closing in on themselves. Let's
make such a room to take advantage of our great tool:

Imagine you need a border or trim to run around the room. It would be a square-section
shape extruded along the walls. We want the trimming to be 32 units high. First, opening
our TEBB, let's choose a ShapeFactor of 32. We have no idea what angles or distances we
might need for the room, so let's use a PathFactor of 32 too, small enough to be precise,
yet high enough not to have to enter huge numbers. ShapeSource can be left to Square,
and because we will do nothing fancy, set PathSource to SO_Vect_Rel. Before hitting
"build", we need to enter at least two PathPoints. The first one can be 0,0,0, but because
we need another, set PathPoint [1] to 0,5,0:

Notice te side of the brush on which the pivot is located. In my case, it is in the upper-
left corner. This is important because when bending the shape some vertices will be taken
off the grid to keep the shape the exact same width on its angled sections:



On this picture, you can clearly see that the vertex (vertices, actually) inside the bend are
off the grid, while those on the outside of the bend are still snapped neatly. This is mostly
determined by the way your brush is built: all vertices on the side of the origin (the 0,0,0
vertex) will be aligned, while those on the other side will be off the grid. If you have
offset your shape so that the origin is not on the same coordinates as a vertex, all
vertices may be off the grid:



In my case, I want the snapped side to be the outside of the border, so that it fits
perfectly with the walls, so that it will be protuding 32 units into the room itself. Because
we will be working with X/Y coordinates, it is preferable to make sure the rotation of your
builder brush has been reset before entering the first coordinates : right-click on the brush
(make one if needed by clicking the Cube Builder Brush) and click Reset => Reset Rotation
(or even Reset All). Then, in your PathPoints, letting 0 to his original 0,0,0 coordinates,
set X=5 in 1. The brush should stretch from his origin to the right. Put the origin inside
your room in a corner:

From now on, your work is only a question of adding successive coordinates to the
PathPoints until it loops back to the corner before your origin. Coordinates can be
negative and non-integers: when your PathFactor is 32 and you need to stretch your brush
only 16 units in a given direction, you can just input 0.5 on the needed axis. After a few
try, PathPoints will start to come naturally to you.



Once you only need one segment, instead of having the brush loop on itself through
PathPoints, simply set ClosedPath to True and hit build. The last segment will
automatically be created by linking the beginning and end of the brush.

Add it and apply a texture. You will notice it already fits nicely (a 90° rotation may be
needed as in my case).



4. That was fun, what's the downside?
The benefits of the Tarquin Extruder Building Brush are many: the ability to quickly create
large complex trims with no effort required to fit and align textures can really speed up
the building of a map. It allows you to fit perfectly a given width on such beams and
borders which means you don't need to make precise assessment of the scaling to be
applied on such and such axis of the texture. It also means you will use less brushes,
making modifications of large rooms easier. Selection will be easy in all viewports. Much
less time will be devoted to painfull vertex-editing of the same brush over and over again
to meet the edges of a room or doorway. You can also easily create wires with curves and
such. All in all, the TEBB is a great tool.

What you should remember is that the TEBB will create brushes with several vertices
completely off the grid, which may complexify and disturb the BSP cuts of a room. Having
too many of such brushes piled on top of each other in a room with an already imbalanced
brushwork will result in BSP corruption, HOMs, BSP holes, invisible polys and other such
artefacts. Though you cannot do much about it, it should force you to use clean, ordered
and aligned BSP snapped to the grid to limit possible troubles. If your basic brushes are
sane, extensive usage of the TEBB should not be problematic.


	archive.org
	Hellkeeper.net


